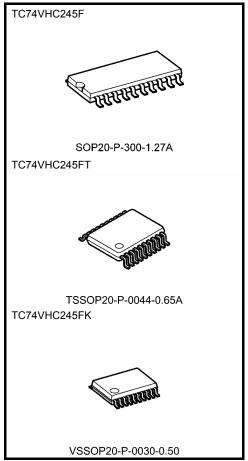
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VHC245F,TC74VHC245FT,TC74VHC245FK

Octal Bus Transceiver

The TC74VHC245 is an advanced high speed CMOS OCTAL BUS TRANSCEIVER fabricated with silicon gate $\rm C^2MOS$ technology.

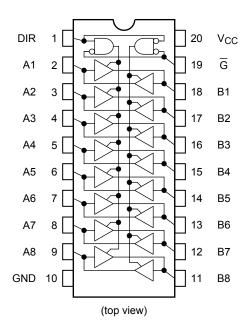
It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

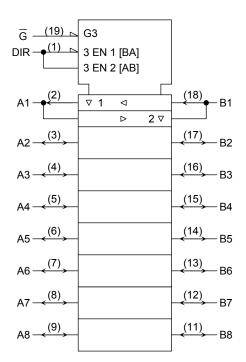

It is intended for two-way asynchronous communication between data busses. The direction of data transmission is determined by the level of the DIR input.

The enable input (\overline{G}) can be used to disable the device so that the busses are effectively isolated.

All inputs are equipped with protection circuits against static discharge.

Features (Note 1) (Note 2) (Note 3)


- High speed: $t_{pd} = 4.0 \text{ ns (typ.)}$ at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_{a} = 25 \text{°C}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2 V to 5.5 V
- Low noise: VOLP = 1.2 V (max)
- Pin and function compatible with 74ALS245
 - Note 1: Do not apply a signal to any bus terminal when it is in the output mode. Damage may result.
 - Note 2: All floating (high impedance) bus terminals must have their input levels fixed by means of pull up or pull down resistors.
 - Note 3: A parasitic diode is formed between the bus and V_{CC} terminals. Therefore bus terminal can not be used to interface 5 V to 3 V systems directly.


Weight

SOP20-P-300-1.27A : 0.22 g (typ.) TSSOP20-P-0044-0.65A : 0.08 g (typ.) VSSOP20-P-0030-0.50 : 0.03 g (typ.)

Pin Assignment

IEC Logic Symbol

Truth Table

Inputs		Fun	Output		
G	DIR	A Bus	Output		
L	L	Output	Input	A = B	
L	Н	Input	B = A		
Н	Х	2	Z		

X: Don't care

Z: High impedance

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5 to 7.0	V
DC input voltage (DIR, \overline{G})	V _{IN}	-0.5 to 7.0	V
DC bus I/O voltage	V _{I/O}	-0.5 to V _{CC} + 0.5	V
Input diode current	lıк	-20	mA
Output diode current	lok	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±75	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	−65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V_{CC}	2.0 to 5.5	V	
Input voltage (DIR, $\overline{\overline{G}}$)	V _{IN}	0 to 5.5	V	
Bus I/O voltage	V _{I/O}	0 to V _{CC}	V	
Operating temperature	T _{opr}	−40 to 85	°C	
Input rise and fall time	dt/dv	0 to 100 (V _{CC} = 3.3 ± 0.3 V)	ns/V	
input rise and rail time	ui/uv	0 to 20 ($V_{CC} = 5 \pm 0.5 \text{ V}$)	115/ V	

Note:

The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs and bus inputs must be tied to either VCC or GND. Please connect both bus inputs and the bus outputs with VCC or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition V _{CC} (V)		Ta = 25°C			Ta = -40 to 85°C		Unit	
Onaraciensiics	Cymbol				Min	Тур.	Max	Min	Max	O.I.I.C
High-level input voltage	V _{IH}	_		2.0 3.0 to 5.5	1.50 V _{CC} × 0.7	1 1		1.50 V _{CC} × 0.7	1 1	V
Low-level input voltage	V _{IL}	_		2.0 3.0 to 5.5	_	1 1	0.50 V _{CC} × 0.3		0.50 V _{CC} × 0.3	V
High-level output	V _{ОН}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -50 μA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5	_ _ _	1.9 2.9 4.4		V
Voltage			$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94		_ _	2.48 3.80		
Low-level output	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 50 μA	2.0 3.0 4.5	_ _ _	0.0 0.0 0.0	0.1 0.1 0.1	_ _ _	0.1 0.1 0.1	V
voltage			I _{OL} = 4 mA I _{OL} = 8 mA	3.0 4.5	_ _	1 1	0.36 0.36	_ _	0.44 0.44	
3-state output off-state current	I _{OZ}	V _{IN} = V _{IH} or V _{IL} V _{OUT} = V _{CC} or GND		5.5	_	_	±0.25	_	±2.50	μА
Input leakage current	I _{IN}	V _{IN} = 5.5 V or GND		0 to 5.5	_	_	±0.1	_	±1.0	μΑ
Quiescent supply current	Icc	V _{IN} = V _{CC} or GND		5.5	_	_	4.0	_	40.0	μΑ

3

AC Characteristics (input: $t_r = t_f = 3$ ns)

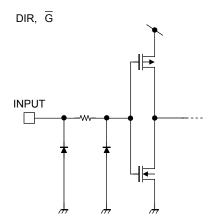
Characteristics	Symbol	Test Condition		Ta = 25°C			Ta = −40 to 85°C		Unit	
	- ,		V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	
	t _{pLH}	_	3.3 ± 0.3	15	_	5.8	8.4	1.0	10.0	
Propagation delay			3.3 ± 0.3	50	_	8.3	11.9	1.0	13.5	ns
time	t_{pHL}		50.05	15	_	4.0	5.5	1.0	6.5	
			5.0 ± 0.5	50	_	5.5	7.5	1.0	8.5	
	^t pZL t _{pZH}	R _L = 1 kΩ	3.3 ± 0.3	15	_	8.5	13.2	1.0	15.5	- ns
3-state output enable				50	-	11.0	16.7	1.0	19.0	
time			5.0 ± 0.5	15	-	5.8	8.5	1.0	10.0	
				50	-	7.3	10.6	1.0	12.0	
3-state output disable	t _{pLZ}	R _L = 1 kΩ	3.3 ± 0.3	50	-	11.5	15.8	1.0	18.0	ns
time	t _{pHZ}		5.0 ± 0.5	50	_	7.0	9.7	1.0	11.0	115
Output to output alcour	t _{osLH}	(A) (A)	3.3 ± 0.3	50	-	_	1.5	_	1.5	ns
Output to output skew	t _{osHL}	(Note 1)	5.0 ± 0.5	50	-	_	1.0	_	1.0	IIS
Input capacitance	C _{IN}	DIR, G			_	4	10	_	10	pF
Bus input capacitance	C _{I/O}	A _n , Bn			_	8	_	_	_	pF
Power dissipation capacitance	C _{PD}			(Note 2)	ı	21		_	_	pF

Note 1: Parameter guaranteed by design.

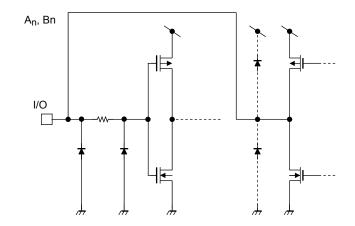
 $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

Note 2: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

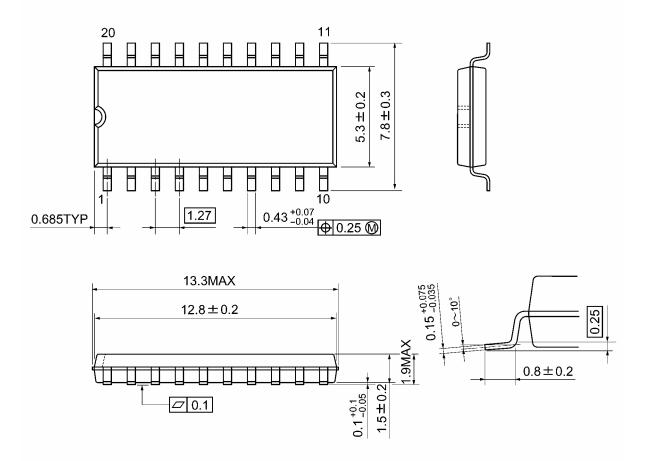

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$

Noise Characteristics (input: $t_r = t_f = 3 \text{ ns}$) (Note)


Characteristics	Symbol	Test Condition		Ta = 25°C		Unit
Characteristics	Syllibol		V _{CC} (V)	Тур.	Max	Offic
Quiet output maximum dynamic V _{OL}	V _{OLP}	C _L = 50 pF	5.0	0.7 (0.9)	1.0 (1.2)	٧
Quiet output minimum dynamic VOL	V _{OLV}	C _L = 50 pF	5.0	-0.7 (-0.9)	-1.0 (-1.2)	V
Minimum high level dynamic input voltage	V _{IHD}	C _L = 50 pF	5.0	_	3.5	V
Maximum low level dynamic input voltage	V _{ILD}	C _L = 50 pF	5.0	_	1.5	٧

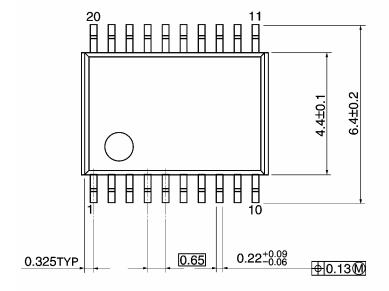
Note: The value in () only applies to JEDEC SOP (FW) devices.

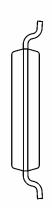
Input Equivalent Circuit

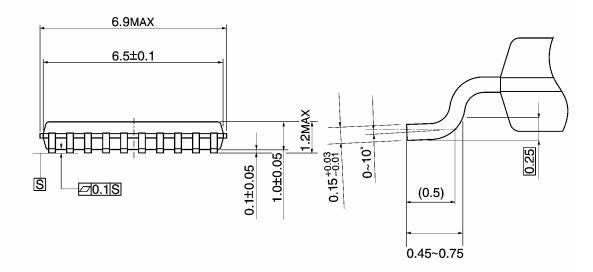

Bus Terminal Equivalent Circuit

5

Package Dimensions

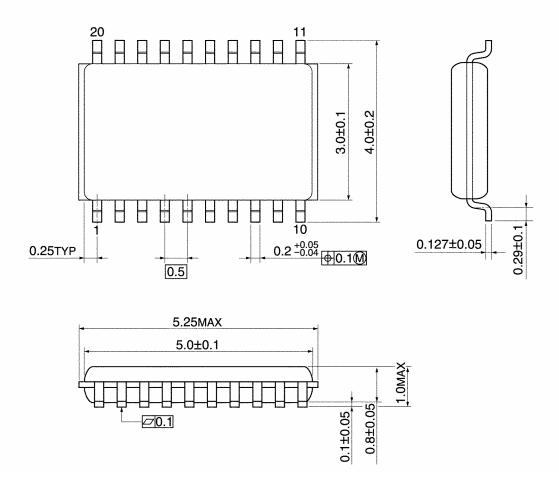

SOP20-P-300-1.27A Unit: mm




Weight: 0.22 g (typ.)

Package Dimensions

TSSOP20-P-0044-0.65A Unit: mm



Weight: 0.08 g (typ.)

Package Dimensions

VSSOP20-P-0030-0.50 Unit: mm

8

Weight: 0.03 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

9